
Security Considerations and Building Trust

Olivier Mehani

Free Software Sydney Meeting — 2015-09-10

About me

I shtrom
I Been using Free software for 15 years (Linux, OpenBSD, . . .)
I Researcher at NICTA in the (former) Network Research Group
I Write code daily
I Administrate various networks at home and at work
I If I can’t patch it, I won’t use it
I mailto:shtrom@ssji.net
I 4435 CF6A 7C8D DD9B E2DE F5F9 F012 A6E2 98C6 6655
I http://blog.narf.ssji.net;

http://www.narf.ssji.net/~shtrom/wiki/

mailto:shtrom@ssji.net
http://blog.narf.ssji.net
http://www.narf.ssji.net/~shtrom/wiki/

About me

Outline

Hashing

Assymetric Cryptography
Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Public-Key Infrastructure (PKI)

Trusting trust

Reproducible builds

Conclusion

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size

I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables
I Content adressing: search for file content locally or remotely

I Git, BitTorrent
I Verify integrity: hash matches downloaded file

I md5sum, sha1sum, sha256sum

I Cryptographic hash

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size
I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables

I Content adressing: search for file content locally or remotely
I Git, BitTorrent

I Verify integrity: hash matches downloaded file
I md5sum, sha1sum, sha256sum

I Cryptographic hash

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size
I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables
I Content adressing: search for file content locally or remotely

I Git, BitTorrent

I Verify integrity: hash matches downloaded file
I md5sum, sha1sum, sha256sum

I Cryptographic hash

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size
I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables
I Content adressing: search for file content locally or remotely

I Git, BitTorrent
I Verify integrity: hash matches downloaded file

I md5sum, sha1sum, sha256sum

I Cryptographic hash

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size
I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables
I Content adressing: search for file content locally or remotely

I Git, BitTorrent
I Verify integrity: hash matches downloaded file

I md5sum, sha1sum, sha256sum

I Cryptographic hash

Hashing
Basic multitool

I Summarise arbitrary length of data into a small fixed size
I Many applications

I Efficient data structures: search for hash rather than full
contents

I Hash tables
I Content adressing: search for file content locally or remotely

I Git, BitTorrent
I Verify integrity: hash matches downloaded file

I md5sum, sha1sum, sha256sum
I Cryptographic hash

I Easy to verify that data matches
I Hard to create data matching a specific hash
I ⇒ Block chains proof-of-work

I Brute-force a random value for a block which makes the hash
start with n 0s

Assymetric Cryptography
Public/private keypairs

I Key pair
I Publish the public key widely
I Keep the private key safe

I Two primitives

I Encryption to a recipient
I Use the recipient’s public key to generate ciphertext
I Use the recipient’s private key to decrypt ciphertext

I Signature from a sender
I Use the sender’s private key to encrypt a hash of the content
I Use the sender’s public key to decrypt the hash, and verify

that it matches the content

I ⇒ Can now check authenticity of data

Assymetric Cryptography
Public/private keypairs

I Key pair
I Publish the public key widely
I Keep the private key safe

I Two primitives
I Encryption to a recipient

I Use the recipient’s public key to generate ciphertext
I Use the recipient’s private key to decrypt ciphertext

I Signature from a sender
I Use the sender’s private key to encrypt a hash of the content
I Use the sender’s public key to decrypt the hash, and verify

that it matches the content

I ⇒ Can now check authenticity of data

Assymetric Cryptography
Public/private keypairs

I Key pair
I Publish the public key widely
I Keep the private key safe

I Two primitives
I Encryption to a recipient

I Use the recipient’s public key to generate ciphertext
I Use the recipient’s private key to decrypt ciphertext

I Signature from a sender
I Use the sender’s private key to encrypt a hash of the content
I Use the sender’s public key to decrypt the hash, and verify

that it matches the content

I ⇒ Can now check authenticity of data

Assymetric Cryptography
Public/private keypairs

I Key pair
I Publish the public key widely
I Keep the private key safe

I Two primitives
I Encryption to a recipient

I Use the recipient’s public key to generate ciphertext
I Use the recipient’s private key to decrypt ciphertext

I Signature from a sender
I Use the sender’s private key to encrypt a hash of the content
I Use the sender’s public key to decrypt the hash, and verify

that it matches the content
I ⇒ Can now check authenticity of data

Assymetric Cryptography
Public/private keypairs

I Key pair
I Publish the public key widely
I Keep the private key safe

I Two primitives
I Encryption to a recipient

I Use the recipient’s public key to generate ciphertext
I Use the recipient’s private key to decrypt ciphertext

I Signature from a sender
I Use the sender’s private key to encrypt a hash of the content
I Use the sender’s public key to decrypt the hash, and verify

that it matches the content
I ⇒ Can now check authenticity of data

I Problem: How do we know who a public
key really belongs to?

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)

I Check data authenticity
I Verify signature of a hash that matches dowloaded data

I gpg --verify data.asc

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Building a decentralised Web-of-trust

I OpenPGP certificates binding some identity to a key pair
I Described by their fingerprint

I “Kinda like a hash”
I gpg --fingerprint f012a6e298c66655

I Verify a PGP certificate
I First-hand: Verify that the fingerprint match what the owner

says
I over a trustworthy channel (e.g., signing party)
I then sign and publish the signature for others to check

I Second-hand: Check that enough turstworthy users have
signed the certificate

I Trust on first sight, trust most used
I Not really sure. . .

I Sign and encrypt any data/message (email, jabber, . . .)
I Check data authenticity

I Verify signature of a hash that matches dowloaded data
I gpg --verify data.asc

Public-Key Infrastructure (PKI)
I Trusted third parties: Certificate authorities (CA)

I Root certificate trusted by clients (e.g., browsers’ trust stores)
I Sign other certificates after verifying who they belong to (e.g.,

domain owner)

I and get money along the way

I Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain

I ⇒ broken model
I DNSSEC/DANE might help reduce the attack surface

I Alternate CAs models
I CAcert:1 based on web-of-trust verification

I human assurers verify your name/ID
I not in common truststores

I Let’s Encrypt:2 Mozilla and others’ initiative
I reduce the barrier to entry for encryption
I doesn’t solve the trust abuse problem
I will launch soon

1http://cacert.org
2http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)
I Trusted third parties: Certificate authorities (CA)

I Root certificate trusted by clients (e.g., browsers’ trust stores)
I Sign other certificates after verifying who they belong to (e.g.,

domain owner)

I and get money along the way
I Problem: any dodgy CA in the trust store can issue a validable

certificate for any domain
I ⇒ broken model
I DNSSEC/DANE might help reduce the attack surface

I Alternate CAs models
I CAcert:1 based on web-of-trust verification

I human assurers verify your name/ID
I not in common truststores

I Let’s Encrypt:2 Mozilla and others’ initiative
I reduce the barrier to entry for encryption
I doesn’t solve the trust abuse problem
I will launch soon

1http://cacert.org
2http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)
I Trusted third parties: Certificate authorities (CA)

I Root certificate trusted by clients (e.g., browsers’ trust stores)
I Sign other certificates after verifying who they belong to (e.g.,

domain owner)
I and get money along the way

I Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain

I ⇒ broken model
I DNSSEC/DANE might help reduce the attack surface

I Alternate CAs models
I CAcert:1 based on web-of-trust verification

I human assurers verify your name/ID
I not in common truststores

I Let’s Encrypt:2 Mozilla and others’ initiative
I reduce the barrier to entry for encryption
I doesn’t solve the trust abuse problem
I will launch soon

1http://cacert.org
2http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)
I Trusted third parties: Certificate authorities (CA)

I Root certificate trusted by clients (e.g., browsers’ trust stores)
I Sign other certificates after verifying who they belong to (e.g.,

domain owner)
I and get money along the way

I Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain

I ⇒ broken model
I DNSSEC/DANE might help reduce the attack surface

I Alternate CAs models
I CAcert:1 based on web-of-trust verification

I human assurers verify your name/ID
I not in common truststores

I Let’s Encrypt:2 Mozilla and others’ initiative
I reduce the barrier to entry for encryption
I doesn’t solve the trust abuse problem
I will launch soon

1http://cacert.org
2http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)
I Trusted third parties: Certificate authorities (CA)

I Root certificate trusted by clients (e.g., browsers’ trust stores)
I Sign other certificates after verifying who they belong to (e.g.,

domain owner)
I and get money along the way

I Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain

I ⇒ broken model
I DNSSEC/DANE might help reduce the attack surface

I Alternate CAs models
I CAcert:1 based on web-of-trust verification

I human assurers verify your name/ID
I not in common truststores

I Let’s Encrypt:2 Mozilla and others’ initiative
I reduce the barrier to entry for encryption
I doesn’t solve the trust abuse problem
I will launch soon

1http://cacert.org
2http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Trusting trust

I One bit flip can introduce a vulnerability
I Hashes can help identify this

I Compiler/toolchain can be compromised3

I Source code is clean
I Binary isn’t

I ⇒ Seeing the source and trusting the build system is not
enough

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761–763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Trusting trust

I One bit flip can introduce a vulnerability
I Hashes can help identify this

I Compiler/toolchain can be compromised3

I Source code is clean
I Binary isn’t

I ⇒ Seeing the source and trusting the build system is not
enough

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761–763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Trusting trust

I One bit flip can introduce a vulnerability
I Hashes can help identify this

I Compiler/toolchain can be compromised3

I Source code is clean
I Binary isn’t

I ⇒ Seeing the source and trusting the build system is not
enough

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761–763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Reproducible builds
I Don’t trust a single party

I Trust uncompiled source code
I Hopefully seen by many eyeballs

I Trust developer
I Hash & sign binary

I . . . but what if binary not built from published version of the
code?

I Trust packager (e.g., Debian, F-Droid)
I Take source code, build binaries
I Hash & sign binary

I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs

I Trust developer
I Hash & sign binary

I . . . but what if binary not built from published version of the
code?

I Trust packager (e.g., Debian, F-Droid)
I Take source code, build binaries
I Hash & sign binary

I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary

I . . . but what if binary not built from published version of the
code?

I Trust packager (e.g., Debian, F-Droid)
I Take source code, build binaries
I Hash & sign binary

I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?

I Trust packager (e.g., Debian, F-Droid)
I Take source code, build binaries
I Hash & sign binary

I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary

I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?

I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?

I . . . or what if the packager is not trustworthy?
I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!

1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!
1. Developer publishes source code
2. . . . builds binary, and create and publish signature

3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!
1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches

5. Anybody else can redo it and verify independently

Reproducible builds
I Don’t trust a single party
I Trust uncompiled source code

I Hopefully seen by many eyeballs
I Trust developer

I Hash & sign binary
I . . . but what if binary not built from published version of the

code?
I Trust packager (e.g., Debian, F-Droid)

I Take source code, build binaries
I Hash & sign binary
I . . . but what if key gets stolen?
I . . . or what if the build machine is compromised?
I . . . or what if the packager is not trustworthy?

I Reproducible builds!
1. Developer publishes source code
2. . . . builds binary, and create and publish signature
3. Packager takes source code
4. . . . rebuilds binary, and check that developer’s signature

matches
5. Anybody else can redo it and verify independently

Conclusion
Tools to build trust

I Hashes: Data summary and integrity

I Cryptography: Verify authenticity
I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files

I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files

I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files

I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files

I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files

I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files
I Verify fingerprints and sign keys

I Try to rebuild reproducible packages from the Debian archive!

Conclusion
Tools to build trust

I Hashes: Data summary and integrity
I Cryptography: Verify authenticity

I Decentralised trust: PFP WoT
I Centralised, and brittle, approach: SSL PKI

I Reproducible builds
I No single source of trust, every step verifiable

I Get in the habit daily
I GPG for email, OTR for chat
I Check hashes and signatures when downloading files
I Verify fingerprints and sign keys
I Try to rebuild reproducible packages from the Debian archive!

	Hashing
	Assymetric Cryptography
	Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
	Public-Key Infrastructure (PKI)

	Trusting trust
	Reproducible builds
	Conclusion

