Security Considerations and Building Trust

Olivier Mehani

Free Software Sydney Meeting — 2015-09-10

About

me

shtrom

Been using Free software for 15 years (Linux, OpenBSD, ...)
Researcher at NICTA in the (former) Network Research Group
Write code daily

Administrate various networks at home and at work

If | can't patch it, | won't use it

mailto:shtrom@ssji.net

4435 CF6A 7C8D DD9B E2DE F5F9 F012 A6E2 98C6 6655

http://blog.narf.ssji.net;
http://www.narf.ssji.net/ shtrom/wiki/

mailto:shtrom@ssji.net
http://blog.narf.ssji.net
http://www.narf.ssji.net/~shtrom/wiki/

About me

Outline

Hashing

Assymetric Cryptography
Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
Public-Key Infrastructure (PKI)

Trusting trust
Reproducible builds

Conclusion

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

—_— C'I

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

» Many applications

» Efficient data structures: search for hash rather than full
contents

» Hash tables

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

» Many applications

» Efficient data structures: search for hash rather than full
contents

> Hash tables
» Content adressing: search for file content locally or remotely
» Git, BitTorrent

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

» Many applications

» Efficient data structures: search for hash rather than full
contents

> Hash tables

» Content adressing: search for file content locally or remotely
» Git, BitTorrent

» Verify integrity: hash matches downloaded file
» md5sum, shalsum, sha256sum

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

» Many applications

» Efficient data structures: search for hash rather than full
contents

> Hash tables

» Content adressing: search for file content locally or remotely
» Git, BitTorrent

» Verify integrity: hash matches downloaded file
» md5sum, shalsum, sha256sum

» Cryptographic hash

Hashing

Basic multitool

» Summarise arbitrary length of data into a small fixed size

» Many applications

» Efficient data structures: search for hash rather than full
contents

> Hash tables

» Content adressing: search for file content locally or remotely
» Git, BitTorrent

» Verify integrity: hash matches downloaded file
» md5sum, shalsum, sha256sum

» Cryptographic hash

» Easy to verify that data matches
» Hard to create data matching a specific hash
» = Block chains proof-of-work
> Brute-force a random value for a block which makes the hash
start with n Os

Assymetric Cryptography

Public/private keypairs

> Key pair
» Publish the public key widely
» Keep the private key safe

%
:

Assymetric Cryptography

Public/private keypairs

> Key pair
» Publish the public key widely
» Keep the private key safe
» Two primitives
» Encryption to a recipient
> Use the recipient’s public key to generate ciphertext
> Use the recipient’s private key to decrypt ciphertext

2 A

Assymetric Cryptography

Public/private keypairs

> Key pair
» Publish the public key widely
» Keep the private key safe
» Two primitives
» Encryption to a recipient
> Use the recipient’s public key to generate ciphertext
> Use the recipient’s private key to decrypt ciphertext
» Signature from a sender
> Use the sender’s private key to encrypt a hash of the content
> Use the sender's public key to decrypt the hash, and verify
that it matches the content

B, 20

Assymetric Cryptography

Public/private keypairs

> Key pair
» Publish the public key widely
» Keep the private key safe
» Two primitives
» Encryption to a recipient
> Use the recipient’s public key to generate ciphertext
> Use the recipient’s private key to decrypt ciphertext
» Signature from a sender
> Use the sender's private key to encrypt a hash of the content
> Use the sender’s public key to decrypt the hash, and verify

that it matches the content
» = Can now check authenticity of data

Assymetric Cryptography

Public/private keypairs

> Key pair
» Publish the public key widely
» Keep the private key safe
» Two primitives
» Encryption to a recipient
> Use the recipient’s public key to generate ciphertext
> Use the recipient’s private key to decrypt ciphertext
» Signature from a sender
> Use the sender’s private key to encrypt a hash of the content
> Use the sender's public key to decrypt the hash, and verify
that it matches the content
» = Can now check authenticity of data

» Problem: How do we know who a public
key really belongs to?

gR“’ @7
L 4

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint

> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint
> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655
» Verify a PGP certificate
» First-hand: Verify that the fingerprint match what the owner
says
> over a trustworthy channel (e.g., signing party)
> then sign and publish the signature for others to check

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint
> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655
» Verify a PGP certificate
» First-hand: Verify that the fingerprint match what the owner
says
> over a trustworthy channel (e.g., signing party)
> then sign and publish the signature for others to check
» Second-hand: Check that enough turstworthy users have
signed the certificate

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint
> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655
» Verify a PGP certificate
» First-hand: Verify that the fingerprint match what the owner
says
> over a trustworthy channel (e.g., signing party)
> then sign and publish the signature for others to check
» Second-hand: Check that enough turstworthy users have
signed the certificate
» Trust on first sight, trust most used

> Not really sure. ..

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint
> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655
» Verify a PGP certificate
» First-hand: Verify that the fingerprint match what the owner
says
> over a trustworthy channel (e.g., signing party)
> then sign and publish the signature for others to check
» Second-hand: Check that enough turstworthy users have
signed the certificate
» Trust on first sight, trust most used

> Not really sure. ..

» Sign and encrypt any data/message (email, jabber, ...)

Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)

Building a decentralised Web-of-trust

» OpenPGP certificates binding some identity to a key pair
» Described by their fingerprint
> “Kinda like a hash”
> gpg --fingerprint £012a6e298c66655
» Verify a PGP certificate
» First-hand: Verify that the fingerprint match what the owner
says
> over a trustworthy channel (e.g., signing party)
> then sign and publish the signature for others to check
» Second-hand: Check that enough turstworthy users have
signed the certificate
» Trust on first sight, trust most used

> Not really sure. ..
» Sign and encrypt any data/message (email, jabber, ...)
» Check data authenticity
» Verify signature of a hash that matches dowloaded data
> gpg --verify data.asc

Public-Key Infrastructure (PKI)

» Trusted third parties: Certificate authorities (CA)

http://cacert.org
*http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)

» Trusted third parties: Certificate authorities (CA)

» Root certificate trusted by clients (e.g., browsers’ trust stores)
» Sign other certificates after verifying who they belong to (e.g.,
domain owner)

http://cacert.org
*http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)

» Trusted third parties: Certificate authorities (CA)

» Root certificate trusted by clients (e.g., browsers’ trust stores)
» Sign other certificates after verifying who they belong to (e.g.,
domain owner)

> and get money along the way

http://cacert.org
*http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)

» Trusted third parties: Certificate authorities (CA)
» Root certificate trusted by clients (e.g., browsers’ trust stores)
» Sign other certificates after verifying who they belong to (e.g.,
domain owner)
> and get money along the way
» Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain

> = broken model
» DNSSEC/DANE might help reduce the attack surface

http://cacert.org
*http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Public-Key Infrastructure (PKI)

» Trusted third parties: Certificate authorities (CA)
» Root certificate trusted by clients (e.g., browsers’ trust stores)
» Sign other certificates after verifying who they belong to (e.g.,
domain owner)
> and get money along the way
» Problem: any dodgy CA in the trust store can issue a validable
certificate for any domain
> = broken model
» DNSSEC/DANE might help reduce the attack surface
> Alternate CAs models
» CAcert:! based on web-of-trust verification
> human assurers verify your name/ID
> not in common truststores
» Let's Encrypt:2 Mozilla and others’ initiative
> reduce the barrier to entry for encryption
> doesn't solve the trust abuse problem
> will launch soon

http://cacert.org
*http://letsencrypt.org/

http://cacert.org
http://letsencrypt.org/

Trusting trust

» One bit flip can introduce a vulnerability
» Hashes can help identify this

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761-763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.£all02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Trusting trust

» One bit flip can introduce a vulnerability
» Hashes can help identify this
» Compiler/toolchain can be compromised?

» Source code is clean
» Binary isn't

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761-763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.£all02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Trusting trust

» One bit flip can introduce a vulnerability
» Hashes can help identify this

» Compiler/toolchain can be compromised?
» Source code is clean
» Binary isn’t

» = Seeing the source and trusting the build system is not
enough

3K. Thompson. “Reflections on Trusting Trust”. In: Communications of
the ACM 27.8 (Aug. 1984). Ed. by P. J. Denning, pp. 761-763. ISSN:
0001-0782. DOI: 10.1145/358198.358210. URL: http:
//www.ece.cmu.edu/~ganger/712.£all02/papers/p761-thompson.pdf

http://dx.doi.org/10.1145/358198.358210
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Reproducible builds

» Don't trust a single party

Reproducible builds

» Don't trust a single party
» Trust uncompiled source code
» Hopefully seen by many eyeballs

Reproducible builds

» Don't trust a single party
» Trust uncompiled source code

» Hopefully seen by many eyeballs
» Trust developer

» Hash & sign binary

Reproducible builds

» Don't trust a single party
» Trust uncompiled source code
» Hopefully seen by many eyeballs
» Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary

vy

v

v

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary
» ...but what if key gets stolen?

vy

v

v

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
Hash & sign binary
... but what if key gets stolen?
...or what if the build machine is compromised?

vy

v

v

vV VvYyy

Reproducible builds

» Don't trust a single party
» Trust uncompiled source code
» Hopefully seen by many eyeballs
» Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
» Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
Hash & sign binary
... but what if key gets stolen?
...or what if the build machine is compromised?
...or what if the packager is not trustworthy?

v

v vy

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary
» ...but what if key gets stolen?
» ...or what if the build machine is compromised?
» ...or what if the packager is not trustworthy?

Reproducible builds!

vy

v

v

v

Reproducible builds

» Don't trust a single party
» Trust uncompiled source code
» Hopefully seen by many eyeballs
» Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
» Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary
» ...but what if key gets stolen?
» ...or what if the build machine is compromised?
» ...or what if the packager is not trustworthy?
» Reproducible builds!

1. Developer publishes source code
2. ...builds binary, and create and publish signature

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary
» ...but what if key gets stolen?
» ...or what if the build machine is compromised?
» ...or what if the packager is not trustworthy?
Reproducible builds!
1. Developer publishes source code
2. ...builds binary, and create and publish signature
3. Packager takes source code
4. ...rebuilds binary, and check that developer's signature
matches

vy

v

v

v

Reproducible builds

Don't trust a single party
Trust uncompiled source code
» Hopefully seen by many eyeballs
Trust developer
» Hash & sign binary
» ...but what if binary not built from published version of the
code?
Trust packager (e.g., Debian, F-Droid)
» Take source code, build binaries
» Hash & sign binary
» ...but what if key gets stolen?
» ...or what if the build machine is compromised?
» ...or what if the packager is not trustworthy?
Reproducible builds!
1. Developer publishes source code
2. ...builds binary, and create and publish signature
3. Packager takes source code
4. ...rebuilds binary, and check that developer's signature
matches
5. Anybody else can redo it and verify independently

vy

v

v

v

Conclusion
Tools to build trust

» Hashes: Data summary and integrity

Conclusion
Tools to build trust

» Hashes: Data summary and integrity
» Cryptography: Verify authenticity
» Decentralised trust: PFP WoT
» Centralised, and brittle, approach: SSL PKI

Conclusion
Tools to build trust

» Hashes: Data summary and integrity
» Cryptography: Verify authenticity
» Decentralised trust: PFP WoT
» Centralised, and brittle, approach: SSL PKI

» Reproducible builds
» No single source of trust, every step verifiable

Conclusion
Tools to build trust

v

Hashes: Data summary and integrity

v

Cryptography: Verify authenticity

» Decentralised trust: PFP WoT

» Centralised, and brittle, approach: SSL PKI
Reproducible builds

» No single source of trust, every step verifiable
Get in the habit daily

» GPG for email, OTR for chat
» Check hashes and signatures when downloading files

v

v

Conclusion
Tools to build trust

v

Hashes: Data summary and integrity

v

Cryptography: Verify authenticity

» Decentralised trust: PFP WoT

» Centralised, and brittle, approach: SSL PKI
Reproducible builds

» No single source of trust, every step verifiable
Get in the habit daily

» GPG for email, OTR for chat
» Check hashes and signatures when downloading files

v

v

Conclusion
Tools to build trust

v

Hashes: Data summary and integrity

v

Cryptography: Verify authenticity

» Decentralised trust: PFP WoT

» Centralised, and brittle, approach: SSL PKI
Reproducible builds

» No single source of trust, every step verifiable
Get in the habit daily

» GPG for email, OTR for chat
» Check hashes and signatures when downloading files
» Verify fingerprints and sign keys

v

v

Conclusion
Tools to build trust

v

Hashes: Data summary and integrity
Cryptography: Verify authenticity
» Decentralised trust: PFP WoT
» Centralised, and brittle, approach: SSL PKI
Reproducible builds
» No single source of trust, every step verifiable
> Get in the habit daily
GPG for email, OTR for chat
Check hashes and signatures when downloading files
Verify fingerprints and sign keys
Try to rebuild reproducible packages from the Debian archive!

v

v

vV vy VvYyy

	Hashing
	Assymetric Cryptography
	Pretty Good Privacy (PGP)/Gnu Privacy Guard (GPG)
	Public-Key Infrastructure (PKI)

	Trusting trust
	Reproducible builds
	Conclusion

